
pycoalaip Documentation
Release 0.0.3

BigchainDB

Nov 26, 2018

Contents

1 pycoalaip 3
1.1 Features . 3
1.2 TODO . 3
1.3 Packaging . 4
1.4 Credits . 4

2 Installation 5
2.1 Stable release . 5
2.2 From sources . 5

3 Usage 7
3.1 Quickstart . 7
3.2 Reference . 9

4 Plugins 11
4.1 Available Plugins . 11
4.2 Writing a Plugin . 11

5 Library Reference 13
5.1 coalaip . 13
5.2 entities . 16
5.3 models . 22
5.4 data formats . 23
5.5 exceptions . 24
5.6 plugin . 24

6 About this Documentation 29
6.1 Building the documentation . 29
6.2 Viewing the documentation . 29
6.3 Making changes . 29

7 Contributing 31
7.1 Types of Contributions . 31
7.2 Get Started! . 32
7.3 Pull Request Guidelines . 33
7.4 Tips . 33

i

8 Credits 35
8.1 Development Lead . 35
8.2 Contributors . 35

9 History 37
9.1 0.0.3 (2017-05-06) . 37
9.2 0.0.2 (2017-05-05) . 37
9.3 0.0.1 (2017-02-17) . 37
9.4 0.0.1.dev3 (2016-12-06) . 38
9.5 0.0.1.dev2 (2016-08-31) . 38
9.6 0.0.1.dev1 (2016-08-31) . 38

10 Indices and tables 39

Python Module Index 41

ii

pycoalaip Documentation, Release 0.0.3

Important: Development Status: Alpha

Contents:

Contents 1

pycoalaip Documentation, Release 0.0.3

2 Contents

CHAPTER 1

pycoalaip

Python reference implementation for COALA IP.

• Development Status: Alpha

• Free software: Apache Software License 2.0

• Documentation: https://pycoalaip.readthedocs.io

1.1 Features

• CoalaIp.generate_user(): Create a user representation suitable for use with coalaip

• CoalaIp.register_manifestation(): Registering a Manifestation (and along with it, an asso-
ciated parent Work and a Copyright of the Manifestation)

• CoalaIp.derive_right(): Derivation of a Right from an allowing source Right or Copyright

• CoalaIp.transfer_right(): Transfer of a Right or Copyright from the current owner to a new
owner

• Querying the ownership history of an COALA IP entity

To learn more about how to use these features, you may be interested in the usage section of the docs.

1.2 TODO

• Host COALA IP JSON-LD definitions and set <coalaip placeholder> to the purl for the definitions.

• Support IPLD serialization

3

https://pypi.python.org/pypi/coalaip
https://travis-ci.org/bigchaindb/pycoalaip
https://codecov.io/github/bigchaindb/pycoalaip?branch=master
https://pycoalaip.readthedocs.io/en/latest/?badge=latest
https://github.com/coalaip/specs
https://pycoalaip.readthedocs.io
https://pycoalaip.readthedocs.io/en/latest/usage.html

pycoalaip Documentation, Release 0.0.3

1.3 Packaging

Bumping versions:

$ bumpversion patch

Releasing to pypi:

$ make release
$ twine upload dist/*

1.4 Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

4 Chapter 1. pycoalaip

https://github.com/audreyr/cookiecutter
https://github.com/audreyr/cookiecutter-pypackage

CHAPTER 2

Installation

2.1 Stable release

To install pycoalaip, run this command in your terminal:

$ pip install coalaip

This is the preferred method to install pycoalaip, as it will always install the most recent stable release.

If you don’t have pip installed, this Python installation guide can guide you through the process.

2.2 From sources

The sources for pycoalaip can be downloaded from the Github repo.

You can either clone the public repository:

$ git clone git://github.com/bigchaindb/pycoalaip

Once you have a copy of the source, you can install it with:

$ python setup.py install

5

https://pip.pypa.io
http://docs.python-guide.org/en/latest/starting/installation/
https://github.com/bigchaindb/pycoalaip

pycoalaip Documentation, Release 0.0.3

6 Chapter 2. Installation

CHAPTER 3

Usage

To use pycoalaip in a project:

import coalaip

3.1 Quickstart

To get started with coalaip, you should first pick a persistence layer (and an accompanying plugin) to use. For a list
of available persistence layer plugins, see here.

Once you’ve configured your chosen plugin, the main workflow to follow is:

1. Create an instance of CoalaIp; 1. Generate users for yourself and other parties; 1. Register a Manifestation
entity (and its accompanying Work and Copyright entities) for your IP; 1. Derive a specific Right from your IP’s
Copyright (or another Right that pertains to your IP); and 1. If desired, transfer the specific Right to another
party, to record a legal transaction relating to the Right (e.g. a transfer of ownership, a loan, etc).

Note: Each of CoalaIp.register_manifestation(), CoalaIp.derive_right(), and CoalaIp.
transfer_right() have optional arguments to cover alternate use cases that are not explained here.

You may be interested in looking at the library reference for their complete documentation.

Warning: In the current implementation, operations that use the persistence layer are NOT ensured to succeed,
and you may find that some operations need to be repeated.

A good example of this is if a storage requiring non-neglible consensus (e.g. BigchainDB) is used: the implemen-
tation assumes that everything has succeeded if it was able to write to the storage rather than confirming (later) that
what it wrote was actually accepted.

7

pycoalaip Documentation, Release 0.0.3

3.1.1 Creating an instance of CoalaIp

Let’s assume you have an instance of a persistence layer plugin ready.

from coalaip import CoalaIp

plugin = Plugin(...)
coalaip = CoalaIp(plugin)

3.1.2 Generating users

Representations of users are defined by the persistence layer plugin. You can generate a user compatible with your
chosen persistence layer by:

Note that the plugin may dictate that you need to provide extra arguments
to this function
user = coalaip.generate_user()

3.1.3 Registering a Manifestation

Upon initial registration of a Manifestation, a Work (if not provided) and Copyright are automatically gener-
ated.

manifestation_data = {...}
registration_result = coalaip.register_manifestation(manifestation_data,

copyright_holder=user)
manifestation = registration_result['manifestation']
work = registration_result['work']
copyright = registration_result['copyright']

3.1.4 Deriving a specific Right

You can create more specific Rights from source Rights or Copyrights if you are the current holder of the
source Right.

copyright = ...
right_data = {...}
right = coalaip.derive_right(right_data, current_holder=user,

source_right=copyright)

3.1.5 Transferring a Right

Transfers of a Right will change ownership of the entity from the current holder to a new holder. A
RightsAssignment entity can also be encoded in a transfer, holding more specific information about the particular
details related to the transaction, such as a agreed-upon contract between the two parties, the time of the transaction,
and etc.

right = ...
current_holder = ... # user representation
new_holder = ... # user representation

(continues on next page)

8 Chapter 3. Usage

pycoalaip Documentation, Release 0.0.3

(continued from previous page)

rights_assignment_data = {...}
rights_assignment = coalaip.transfer_right(right, rights_assignment_data,

current_holder=current_holder,
to=new_holder)

3.1.6 Querying for an Entity’s ownership history

Each entity returned has a .history() method and .current_owner property defined, in case you’re interested
in finding out the ownership history of the entity.

3.1.7 Obtaining an instance of an Entity

If you know you have COALA IP entities persisted, but don’t have them in an Entity class (e.g. you saved the
entities’ IDs in a database, and now want to use them), you can load an instance of an Entity by using the static
.from_persist_id() method of that entity type.

from coalaip.entities import Manifestation

manifestation_id = '...'
manifestation = Manifestation.from_persist_id(manifestation_id,

plugin=plugin)

Doing so will generate a lazy-loaded entity for you to use. Accessing the entity’s data for the first time will load the
entity from the persistence layer (which may error); if you’d like to load it immediately, you can either call .load()
or use the force_load flag in .from_persist_id():

manifestation = Manifestation.from_persist_id(manifestation_id,
plugin=plugin)

manifestation.load()

Or
manifestation = Manifestation.from_persist_id(manifestation_id,

force_load=True,
plugin=plugin)

3.2 Reference

See the library reference for a complete reference of all available classes and functions.

3.2. Reference 9

pycoalaip Documentation, Release 0.0.3

10 Chapter 3. Usage

CHAPTER 4

Plugins

pycoalaip requires a persistence layer plugin to be used in order to persist COALA IP entities to a distributed
ledger, database, or file storage system.

4.1 Available Plugins

• BigchainDB

4.2 Writing a Plugin

Writing a plugin for pycoalaip is relatively simple. We use the pycoalaip-{plugin_name} naming scheme for plugin
packages.

A plugin is expected to subclass from AbstractPlugin and implement all the abstract methods and properties,
following the API laid out in the AbstractPlugin’s documentation.

To make your plugin discoverable by name to pycoalaip, you should also set an entry point in your setup.py
for the coalaip_plugin namespace. Taking the BigchainDB plugin as an example, this may look something like:

setup(
...
entry_points={

'coalaip_plugin': 'bigchaindb = coalaip_bigchaindb.plugin:Plugin'
},
...

)

11

https://github.com/bigchaindb/pycoalaip-bigchaindb

pycoalaip Documentation, Release 0.0.3

12 Chapter 4. Plugins

CHAPTER 5

Library Reference

5.1 coalaip

High-level functions for interacting with COALA IP entities

class coalaip.coalaip.CoalaIp(plugin)
High-level, plugin-bound COALA IP functions.

Instantiated with an subclass implementing the ledger plugin interface (AbstractPlugin) that will automat-
ically be bound to all top-level functions:

• generate_user()

• register_manifestation()

• derive_right()

• transfer_right()

plugin
Plugin – Bound persistence layer plugin.

__init__(plugin)→ None
Initialize self. See help(type(self)) for accurate signature.

derive_right(right_data, *, current_holder, source_right=None, right_entity_cls=<class
’coalaip.entities.Right’>, **kwargs)

Derive a new Right from an existing source_right (a Right or subclass) for the current_holder
of the source_right. The newly registered Right can then be transferred to other Parties.

Parameters

• right_data (dict) – Model data for the right_entity_cls. See the given
right_entity_cls for requirements. If source is provided in the dict, the
source_right parameter is ignored.

• current_holder (any, keyword) – The current holder of the source_right;
must be specified in the format required by the persistence layer

13

https://docs.python.org/3/library/stdtypes.html#dict

pycoalaip Documentation, Release 0.0.3

• source_right (Right, keyword, optional) – An already persisted Right that the new
Right is allowed by. Must be using the same plugin that CoalaIp was instantiated with.
Ignored if source is provided in right_data.

• right_entity_cls (subclass of Right, keyword, optional) – The class that must be
instantiated for the newly derived right. Defaults to Right.

• **kwargs – Keyword arguments passed through to the right_entity_cls’s
create method (e.g. create()’s data_format)

Returns A registered right_entity_cls Right (by default a Right)

Raises

• ModelDataError – If the right_data contains invalid or is missing required prop-
erties.

• EntityNotYetPersistedError – If the source_right is not associated with
an id on the persistence layer (persist_id) yet

• EntityCreationError – If the Right fails to be created on the persistence layer

• PersistenceError – If any other error occurred with the persistence layer

generate_user(*args, **kwargs)
Generate a new user for the backing persistence layer.

Parameters

• *args – Argument list passed to the plugin’s generate_user()

• **kwargs – Keyword arguments passed to the plugin’s generate_user()

Returns A representation of a user, based on the persistence layer plugin

Raises PersistenceError – If a user couldn’t be generated on the persistence layer

register_manifestation(manifestation_data, *, copyright_holder, existing_work=None,
work_data=None, create_work=True, create_copyright=True,
**kwargs)

Register a Manifestation and automatically assign its corresponding Copyright to the given user.

Unless specified (see existing_work), also registers a new Work for the Manifestation.

Parameters

• manifestation_data (dict) – Model data for the Manifestation. See
Manifestation for requirements. If manifestationOfWork is provided in the
dict, the existing_work and work_data parameters are ignored and no Work is
registered.

• copyright_holder (any, keyword) – The user to hold the corresponding Copy-
right of the registered Manifestation; must be specified in the format required by the per-
sistence layer

• existing_work (Work, keyword, optional) – An already persisted Work that the Man-
ifestation is derived from. Must be using the same plugin that CoalaIp was instantiated
with. If specified, the work_data parameter is ignored and no Work is registered.

• work_data (dict, keyword, optional) – Model data for the Work that will
automatically generated for the Manifestation if no existing_work was specified. See
Work for requirements. If not specified, the Work will be created using only the name of
the Manifestation.

14 Chapter 5. Library Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

pycoalaip Documentation, Release 0.0.3

• create_work (bool, keyword, optional) – To allow for the creation of a Man-
ifestation without attaching a Work. Default is True.

• create_copyright (bool, keyword, optional) – To allow for the creation
of a Manifestation without attaching a Copyright. Default is True.

• **kwargs – Keyword arguments passed through to each model’s create() (e.g.
data_format).

Returns

A namedtuple containing the Coypright of the registered Manifestation, the registered
Manifestation, and the Work as named fields:

(
'copyright': (:class:`~.Copyright`),
'manifestation': (:class:`~.Manifestation`),
'work': (:class:`~.Work`),

)

If manifestationOfWork was provided in manifestation_data, None will be re-
turned for the Work; otherwise, the given existing_work or automatically created Work
will be returned.

Return type RegistrationResult

Raises

• ModelDataError – If the manifestation_data or work_data contain invalid
or are missing required properties.

• IncompatiblePluginError – If the existing_work is not using a compatible
plugin

• EntityNotYetPersistedError – If the existing_work is not associated with
an id on the persistence layer (persist_id) yet

• EntityCreationError – If the manifestation, its copyright, or the automatically cre-
ated work (if no existing work is given) fail to be created on the persistence layer

• PersistenceError – If any other error occurred with the persistence layer

register_work(work_data, *, copyright_holder, **kwargs)
Register a work

transfer_right(right, rights_assignment_data=None, *, current_holder, to, **kwargs)
Transfer a Right to another user.

Parameters

• right (Right) – An already persisted Right to transfer

• rights_assignment_data (dict, optional) – Model data for the generated
RightsAssignment that will be associated with the transfer

• current_holder (any, keyword) – The current holder of the right; must be
specified in the format required by the persistence layer

• to (any, keyword) – The new holder of the right; must be specified in the format
required by the persistence layer. If the specified user format includes private informa-
tion (e.g. a private key) but is not required by the persistence layer to identify a transfer
recipient, then this information may be omitted in this argument.

5.1. coalaip 15

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict

pycoalaip Documentation, Release 0.0.3

• **kwargs – keyword arguments passed through to the right’s transfer method
(e.g. transfer()’s rights_assignment_format)

Returns the RightsAssignment entity associated with this transfer

Return type RightsAssignment

Raises

• EntityNotYetPersistedError – If the right has not been persisted yet

• EntityNotFoundError – If the right was not found on the persistence layer

• EntityTransferError – If the right fails to be transferred on the persistence layer

• PersistenceError – If any other error occurred with the persistence layer

5.2 entities

Entities mirroring COALA IP’s entity model.

Requires usage with a persistence layer plugin (see AbstractPlugin) for the creation and transfer of entities.
JSON, JSON-LD, and IPLD data formats are supported.

Note: This module should not be used directly to generate entities, unless you are extending the built-ins for your
own extensions. Instead, use the high-level functions (coalaip) that return instances of these entities.

Warning: The immutability guarantees given in this module are best-effort. There is no general way to achieve
immutability in Python, but we try our hardest to make it so.

5.2.1 Core Entities

Note: Most of these core entity classes have their functionality implemented through Entity . See Entity for an
overview of the base functionality of each of these core entities.

class coalaip.entities.Work(model, plugin)
COALA IP’s Work entity.

A distinct, abstract Creation whose existence is revealed through one or more Manifestation entities.

Work entities are always of @type ‘AbstractWork’.

classmethod generate_model(*args, **kwargs)
Generate a Work model.

See generate_model() for more details.

Ignores the given ld_type as Work entities always have @type ‘AbstractWork’.

class coalaip.entities.Manifestation(model, plugin)
COALA IP’s Manifestation entity.

A perceivable manifestation of a Work.

Manifestation entities are by default of @type ‘CreativeWork’.

16 Chapter 5. Library Reference

pycoalaip Documentation, Release 0.0.3

classmethod generate_model(*args, **kwargs)
Generate a Manifestation model.

See generate_model() for more details.

class coalaip.entities.Right(model, plugin)
COALA IP’s Right entity. Transferrable.

A statement of entitlement (i.e. “right”) to do something in relation to a Work or Manifestation.

More specific rights, such as PlaybackRights, StreamRights, etc should be implemented as subclasses
of this class.

By default, Rights entities are of @type ‘Right’ and only include the COALA IP context, as Rights are not
dependent on schema.org.

classmethod generate_model(*args, **kwargs)
Generate a Work model.

See generate_model() for more details.

transfer(rights_assignment_data=None, *, from_user, to_user, rights_assignment_format=’jsonld’)
Transfer this Right to another owner on the backing persistence layer.

Parameters

• rights_assignment_data (dict) – Model data for the resulting
RightsAssignment

• from_user (any, keyword) – A user based on the model specified by the persistence
layer

• to_user (any, keyword) – A user based on the model specified by the persistence
layer

• rights_assignment_format (str, keyword, optional) – Data format of
the created entity; must be one of:

– ’jsonld’ (default)

– ’json’

– ’ipld’

Returns The RightsAssignment entity created from this transfer

Return type RightsAssignment

Raises See transfer()

class coalaip.entities.Copyright(model, plugin)
COALA IP’s Copyright entity. Transferrable.

The full entitlement of Copyright to a Work or Manifestation.

Copyright entities are always of @type ‘Copyright’ and by default only include the COALA IP context, they
are not dependent on schema.org.

classmethod generate_model(*args, **kwargs)
Generate a Work model.

See generate_model() for more details.

Ignores the given ld_type as Copyright are always ‘Copyright’s.

5.2. entities 17

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

pycoalaip Documentation, Release 0.0.3

class coalaip.entities.RightsAssignment(model, plugin)
COALA IP’s RightsAssignment entity.

The assignment (e.g. transfer) of a Right to someone.

RightsAssignment entities may only be persisted in the underlying persistence layer through transfer op-
erations, and hence cannot be created normally through create().

RightsAssignment entities are always of @type ‘RightsAssignment’ and by default only include the
COALA IP context, as Copyrights are not dependent on schema.org.

create(*args, **kwargs)
Removes the ability to persist a RightsAssignment normally. Raises PersistenceError if
called.

classmethod generate_model(*args, **kwargs)
Generate a Work model.

See generate_model() for more details.

Ignores the given ld_type as RightsAssignment entities always have @type ‘RightsTransferAc-
tion’s.

5.2.2 Base Entities

Base functionality for the models above. These should never be instantiated; prefer one of the Core Entities instead.

class coalaip.entities.Entity(model, plugin)
Abstract base class of all COALA IP entity models.

Immutable (see :class:‘~.PostInitImmutable‘).

Implements base functionality for all COALA IP entities, including entity creation (create()) and status
queries (status) on the backing persistence layer provided by plugin.

Subclasses must implement their own generate_model(); generate_model() determines the seman-
tics behind model (its creation and validation).

model
Model or LazyLoadableModel – Model of the entity. Holds the data and Linked Data (JSON-LD)
specifics.

plugin
subclass of AbstractPlugin – Persistence layer plugin used by the Entity

persist_id
str – Id of this entity on the persistence layer, if saved to one. Initially None. Not initable. Note that this
attribute is only immutable after it’s been set once after initialization (e.g. after create()).

create(user, data_format=<DataFormat.jsonld: ’jsonld’>)
Create (i.e. persist) this entity to the backing persistence layer.

Parameters

• user (any) – A user based on the model specified by the persistence layer

• data_format (DataFormat or str) – Data format used in persisting the entity; must
be a member of DataFormat or a string equivalent. Defaults to jsonld.

Returns Id of this entity on the persistence layer

Return type str

Raises

18 Chapter 5. Library Reference

https://docs.python.org/3/library/stdtypes.html#str

pycoalaip Documentation, Release 0.0.3

• EntityCreationError – If an error occurred during the creation of this entity that
caused it to NOT be persisted. Contains the original error from the persistence layer, if
available.

• EntityPreviouslyCreatedError – If the entity has already been persisted. Con-
tains the existing id of the entity on the persistence layer.

• PersistenceError – If any other unhandled error in the plugin occurred

current_owner
any – A user based on the model specified by the persistence layer if a current owner exists, otherwise
None. In the case where the user model contains secret information, the returned user may omit this
information.

Raises

• EntityNotFoundError – If the entity is persisted, but could not be found on the
persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

data
dict – A copy of the basic data held by this entity model. Does not include any JSON-LD or IPLD specific
information.

If the entity was generated through from_persist_id(), the first access of this property may also
load the entity’s data from the persistence layer (see load() for potentially raised exceptions)

classmethod from_data(data, *, data_format=<DataFormat.jsonld: ’jsonld’>, plugin)
Generic factory for instantiating cls entities from their model data. Entities instantiated from this factory
have yet to be created on the backing persistence layer; see create() on persisting an entity.

Based on the data_format, the following are considered special keys in data and will have different
behaviour depending on the data_type requested in later methods (e.g. create()):

• jsonld:

– ‘@type’ denotes the Linked Data type of the entity

– ‘@context’ denotes the JSON-LD context of the entity

– ‘@id’ denotes the JSON-LD identity of the entity

• Otherwise:

– ‘type’ denotes the Linked Data type of the entity

Parameters

• data (dict) – Model data for the entity

• data_format (DataFormat or str) – Data format of data; must be a member of
DataFormat or a string equivalent. Defaults to jsonld.

• plugin (subclass of AbstractPlugin, keyword) – Persistence layer plugin used by
generated cls

Returns A generated cls entity from data

Return type cls

Raises ModelDataError – if data fails model validation

5.2. entities 19

mailto:'@type
mailto:'@context
mailto:'@id
https://docs.python.org/3/library/stdtypes.html#dict

pycoalaip Documentation, Release 0.0.3

classmethod from_persist_id(persist_id, *, force_load=False, plugin)
Generic factory for creating cls entity instances from their persisted ids.

Note: by default, instances generated from this factory lazily load their data upon first access (accessing
data()), which may throw under various conditions. In general, most usages of Entity and its sub-
classes do not require access to their data (including internal methods), and thus the data does not usually
need to be loaded unless you expect to explicitly use data() or one of the transformation methods, e.g.
to_json(). If you know you will be using the data and want to avoid raising unexpected exceptions
upon access, make sure to set force_load or use load() on the returned entity before accessing
data().

Parameters

• persist_id (str) – Id of the entity on the persistence layer (see Entity.plugin)

• force_load (bool, keyword, optional) – Whether to load the entity’s data
immediately from the persistence layer after instantiation. Defaults to false.

• plugin (subclass of AbstractPlugin, keyword) – Persistence layer plugin used by
generated cls

Returns A generated entity based on persist_id

Return type cls

Raises

• If force_load is True, see load() for the

• list of possible exceptions.

classmethod generate_model(*, data, ld_type, ld_context, model_cls)
Generate a model instance for use with the current cls.

Must be implemented by subclasses of Entity .

Parameters

• data (dict, keyword) – Model data

• ld_type (str, keyword) – @type of the entity.

• ld_context (str or dict or [str|dict], keyword) – “@context” for the
entity as either a string URL or array of string URLs or dictionaries. See the JSON-LD
spec on contexts for more information.

• model_cls (class, keyword) – Model class to use the generated model. See
models.

Returns A model instance

Raises ModelDataError – if data fails model validation

history
list of dict – A list containing the ownership history of this entity. Each item in the list is a dict containing
a user based on the model specified by the persistence layer and a reference id for the event (e.g. transfer).
The ownership events are sorted starting from the beginning of the entity’s history (i.e. creation). In the
case where the user model contains secret information, the returned user may omit this information.

Raises

• EntityNotFoundError – If the entity is persisted, but could not be found on the
persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

20 Chapter 5. Library Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://www.w3.org/TR/json-ld/#the-context
https://www.w3.org/TR/json-ld/#the-context

pycoalaip Documentation, Release 0.0.3

load()
Load this entity from the backing persistence layer, if possible.

When used by itself, this method is most useful in ensuring that an entity generated from
from_persist_id() is actually available on the persistence layer to avoid errors later.

Raises

• EntityNotYetPersistedError – If the entity is not associated with an id on the
persistence layer (persist_id) yet

• EntityNotFoundError – If the entity has a persist_id but could not be found on
the persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

• ModelDataError – If the loaded entity’s data fails validation or its type or context
differs from their expected values

status
The current status of this entity in the backing persistence layer, as defined by Entity.plugin. Initially
None.

Raises

• EntityNotFoundError – If the entity is persisted, but could not be found on the
persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

to_ipld()
Output this entity’s data as an IPLD-serializable dict.

The entity’s @type is represented as ‘type’ and the @context is ignored.

to_json()
Output this entity as a JSON-serializable dict.

The entity’s @type is represented as ‘type’ and the @context is ignored.

to_jsonld()
Output this entity as a JSON-LD-serializable dict.

Adds the @type, @context, and @id as-is. If no @id was given, an empty @id is used by default to refer
to the current persist_id document.

class coalaip.entities.TransferrableEntity(model, plugin)
Base class for transferable COALA IP entity models.

Provides functionality for transferrable entities through transfer()

transfer(transfer_payload=None, *, from_user, to_user)
Transfer this entity to another owner on the backing persistence layer

Parameters

• transfer_payload (dict) – Payload for the transfer

• from_user (any) – A user based on the model specified by the persistence layer

• to_user (any) – A user based on the model specified by the persistence layer

Returns Id of the resulting transfer action on the persistence layer

Return type str

Raises

5.2. entities 21

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

pycoalaip Documentation, Release 0.0.3

• EntityNotYetPersistedError – If the entity being transferred is not associated
with an id on the persistence layer (persist_id) yet

• EntityNotFoundError – If the entity could not be found on the persistence layer

• EntityTransferError – If the entity fails to be transferred on the persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

5.3 models

Low level data models for COALA IP entities.

Encapsulates the data modelling of COALA IP entities. Supports model validation and the loading of data from a
backing persistence layer.

Note: This module should not be used directly to generate models, unless you are extending the built-ins for your
own extensions. Instead, use the models that are contained in the entities (entities) returned from the high-level
functions (coalaip).

Warning: The immutability guarantees given in this module are best-effort. There is no general way to achieve
immutability in Python, but we try our hardest to make it so.

class coalaip.models.Model(data, ld_type, ld_id=”, ld_context=NOTHING, valida-
tor=<instance_of validator for type <class ’mappingproxy’>>)

Basic data model class for COALA IP entities. Includes Linked Data (JSON-LD) specifics.

Immutable (see :class:‘~.PostInitImmutable‘ and attributes).

Initialization may throw if attribute validation fails.

data
dict – Model data. Uses validator for validation.

ld_type
str – @type of the entity

ld_id
str – @id of the entity

ld_context
str or dict or [str|dict], keyword – “@context” for the entity as either a string URL or array of string URLs
or dictionaries. See the JSON-LD spec on contexts for more information.

validator
callable – A validator complying to attr’s validator API that will validate data

__init__(data, ld_type, ld_id=”, ld_context=NOTHING, validator=<instance_of validator for type
<class ’mappingproxy’>>)→ None

Initialize self. See help(type(self)) for accurate signature.

class coalaip.models.LazyLoadableModel(ld_type, ld_id=None, ld_context=None, valida-
tor=<instance_of validator for type <class ’map-
pingproxy’>>, data=None)

Lazy loadable data model class for COALA IP entities.

Immutable (see :class:‘.PostInitImmutable‘ and attributes).

22 Chapter 5. Library Reference

https://www.w3.org/TR/json-ld/#the-context
https://attrs.readthedocs.io/en/stable/examples.html#validators

pycoalaip Documentation, Release 0.0.3

Similar to Model, except it allows the model data to be lazily loaded afterwards from a backing persistence
layer through a plugin.

loaded_model
Model – Loaded model from a backing persistence layer. Initially None. Not initable. Note that this
attribute is only immutable after it’s been set once after initialization (e.g. after load()).

ld_type
See ld_type

ld_context
See ld_context

validator
See validator

__init__(ld_type, ld_id=None, ld_context=None, validator=<instance_of validator for type <class
’mappingproxy’>>, data=None)

Initialize a LazyLoadableModel instance.

If a data is provided, a Model is generated as the instance’s loaded_model using the given arguments.

Ignores ld_id, see the ld_id() property instead.

data
dict – Model data.

Raises ModelNotYetLoadedError if the data has not been loaded yet.

ld_id
str – @id of the entity.

Raises ModelNotYetLoadedError if the data has not been loaded yet.

load(persist_id, *, plugin)
Load the loaded_model of this instance. Noop if model was already loaded.

Parameters

• persist_id (str) – Id of this model on the persistence layer

• plugin (subclass of AbstractPlugin) – Persistence layer plugin to load from

Raises

• ModelDataError – If the loaded entity’s data fails validation from validator or its
type or context differs from their expected values

• EntityNotFoundError – If the entity could not be found on the persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

5.4 data formats

Utilities for data formats supported by pycoalaip.

class coalaip.data_formats.DataFormat
Enum of supported data formats.

5.4. data formats 23

https://docs.python.org/3/library/stdtypes.html#str

pycoalaip Documentation, Release 0.0.3

5.5 exceptions

Custom exceptions for COALA IP

class coalaip.exceptions.CoalaIpError
Base class for all Coala IP errors.

class coalaip.exceptions.IncompatiblePluginError
Raised when entities with incompatible plugins are used together. Should contain a list of the incompatible
plugins as the first argument.

class coalaip.exceptions.ModelError
Base class for all model errors.

class coalaip.exceptions.ModelDataError
Raised if there is an error with the model’s data.

class coalaip.exceptions.ModelNotYetLoadedError
Raised if the lazily loaded model has not been loaded from the backing persistence layer yet.

class coalaip.exceptions.PersistenceError(message=”, error=None)
Base class for all persistence-related errors.

message
str – Message of the error

error
Exception – Original exception, if available

class coalaip.exceptions.EntityCreationError(message=”, error=None)
Raised if an error occured during the creation of an entity on the backing persistence layer. Should contain the
original error that caused the failure, if available.

class coalaip.exceptions.EntityNotFoundError(message=”, error=None)
Raised if the entity could not be found on the backing persistence layer

class coalaip.exceptions.EntityNotYetPersistedError(message=”, error=None)
Raised when an action requiring an entity to be available on the persistence layer is attempted on an entity that
has not been persisted yet.

class coalaip.exceptions.EntityPreviouslyCreatedError(existing_id, *args, **kwargs)
Raised when attempting to persist an already persisted entity. Should contain the existing id of the entity.

existing_id
str – Currently existing id of the entity on the persistence layer

See :exc:`.PersistenceError` for other attributes.

class coalaip.exceptions.EntityTransferError(message=”, error=None)
Raised if an error occured during the transfer of an entity on the backing persistence layer. Should contain the
original error that caused the failure, if available.

5.6 plugin

class coalaip.plugin.AbstractPlugin
Abstract interface for all persistence layer plugins.

Expects the following to be defined by the subclass:

• type (as a read-only property)

24 Chapter 5. Library Reference

https://docs.python.org/3/library/exceptions.html#Exception

pycoalaip Documentation, Release 0.0.3

• generate_user()

• get_status()

• save()

• transfer()

generate_user(*args, **kwargs)
Generate a new user on the persistence layer.

Parameters

• *args – argument list, as necessary

• **kwargs – keyword arguments, as necessary

Returns A representation of a user (e.g. a tuple with the user’s public and private keypair) on
the persistence layer

Raises PersistenceError – If any other unhandled error in the plugin occurred

get_history(persist_id)
Get the ownership history of an entity on the persistence layer.

Parameters persist_id (str) – Id of the entity on the persistence layer

Returns

The ownership history of the entity, sorted starting from the beginning of the entity’s history
(i.e. creation). Each dict is of the form:

{
'user': A representation of a user as specified by the

persistence layer (may omit secret details, e.g.
→˓private keys),

'event_id': A reference id for the ownership event (e.g.
→˓transfer id)
}

Return type list of dict

Raises

• EntityNotFoundError – If the entity could not be found on the persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

get_status(persist_id)
Get the status of an entity on the persistence layer.

Parameters persist_id (str) – Id of the entity on the persistence layer

Returns Status of the entity, in any format.

Raises

• EntityNotFoundError – If the entity could not be found on the persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

is_same_user(user_a, user_b)
Compare the given user representations to see if they mean the same user on the persistence layer.

Parameters

• user_a (any) – User representation

5.6. plugin 25

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pycoalaip Documentation, Release 0.0.3

• user_b (any) – User representation

Returns Whether the given user representations are the same user.

Return type bool

load(persist_id)
Load the entity from the persistence layer.

Parameters persist_id (str) – Id of the entity on the persistence layer

Returns The persisted data of the entity

Return type dict

Raises

• EntityNotFoundError – If the entity could not be found on the persistence layer

• PersistenceError – If any other unhandled error in the plugin occurred

save(entity_data, *, user)
Create the entity on the persistence layer.

Parameters

• entity_data (dict) – The entity’s data

• user (any, keyword) – The user the entity should be assigned to after creation. The
user must be represented in the same format as generate_user()’s output.

Returns Id of the created entity on the persistence layer

Return type str

Raises

• EntityCreationError – If the entity failed to be created

• PersistenceError – If any other unhandled error in the plugin occurred

transfer(persist_id, transfer_payload, *, from_user, to_user)
Transfer the entity whose id matches persist_id on the persistence layer from the current user to a
new owner.

Parameters

• persist_id (str) – Id of the entity on the persistence layer

• transfer_payload (dict) – The transfer’s payload

• from_user (any, keyword) – The current owner, represented in the same format as
generate_user()’s output

• to_user (any, keyword) – The new owner, represented in the same format as
generate_user()’s output. If the specified user format includes private information
(e.g. a private key) but is not required by the persistence layer to identify a transfer recipi-
ent, then this information may be omitted in this argument.

Returns Id of the transfer action on the persistence layer

Return type str

Raises

• EntityNotFoundError – If the entity could not be found on the persistence layer

• EntityTransferError – If the entity failed to be transferred

26 Chapter 5. Library Reference

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

pycoalaip Documentation, Release 0.0.3

• PersistenceError – If any other unhandled error in the plugin occurred

type
A string denoting the type of plugin (e.g. BigchainDB).

5.6. plugin 27

pycoalaip Documentation, Release 0.0.3

28 Chapter 5. Library Reference

CHAPTER 6

About this Documentation

This section contains instructions to build and view the documentation locally.

If you do not have a clone of the repo, you need to get one.

6.1 Building the documentation

To build the docs, simply run

$ make docs

6.2 Viewing the documentation

You can either start a little web server locally, or open the HTML files with your browser.

To start a web server at http://localhost:5555/

In project root, after making the docs
$ cd docs/_build/html/ && python -m SimpleHTTPServer 5555

Alternatively, open the docs/_build/html/index.html file in your web browser.

6.3 Making changes

Rebuild the docs and refresh the page on your web browser.

29

http://localhost:5555/

pycoalaip Documentation, Release 0.0.3

30 Chapter 6. About this Documentation

CHAPTER 7

Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

7.1 Types of Contributions

7.1.1 Report Bugs

Report bugs at https://github.com/bigchaindb/pycoalaip/issues.

If you are reporting a bug, please include:

• Your operating system name and version.

• Any details about your local setup that might be helpful in troubleshooting.

• Detailed steps to reproduce the bug.

7.1.2 Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” and “help wanted” is open to whoever wants
to implement it.

7.1.3 Implement Features

Look through the GitHub issues for features. Anything tagged with “enhancement” and “help wanted” is open to
whoever wants to implement it.

31

https://github.com/bigchaindb/pycoalaip/issues

pycoalaip Documentation, Release 0.0.3

7.1.4 Write Documentation

pycoalaip could always use more documentation, whether as part of the official pycoalaip docs, in docstrings, or even
on the web in blog posts, articles, and such.

7.1.5 Submit Feedback

The best way to send feedback is to file an issue at https://github.com/bigchaindb/pycoalaip/issues.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that contributions are welcome :)

7.2 Get Started!

Ready to contribute? Here’s how to set up coalaip for local development.

1. Fork the coalaip repo on GitHub.

2. Clone your fork locally:

$ git clone git@github.com:your_name_here/coalaip.git

3. Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up
your fork for local development:

$ mkvirtualenv coalaip
$ cd coalaip/
$ pip install -r requirements_dev.txt

4. Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

5. When you’re done making changes, check that your changes pass flake8 and the tests, including testing other
Python versions with tox:

$ flake8 coalaip tests
$ pytest
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

6. Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

7. Submit a pull request through the GitHub website.

32 Chapter 7. Contributing

https://github.com/bigchaindb/pycoalaip/issues

pycoalaip Documentation, Release 0.0.3

7.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.

2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function
with a docstring, and add the feature to the list in README.rst.

3. The pull request should work for Python 3.4 and 3.5. Check https://travis-ci.org/bigchaindb/pycoalaip/pull_
requests and make sure that the tests pass for all supported Python versions.

7.4 Tips

To run a subset of tests:

$ pytest tests.test_coalaip

To run tests with debugging:

$ pytest -s

To run tests and break on errors:

$ pytest --pdb

7.3. Pull Request Guidelines 33

https://travis-ci.org/bigchaindb/pycoalaip/pull_requests
https://travis-ci.org/bigchaindb/pycoalaip/pull_requests

pycoalaip Documentation, Release 0.0.3

34 Chapter 7. Contributing

CHAPTER 8

Credits

8.1 Development Lead

• BigchainDB <dev@bigchaindb.com>

8.2 Contributors

None yet. Why not be the first?

35

mailto:dev@bigchaindb.com

pycoalaip Documentation, Release 0.0.3

36 Chapter 8. Credits

CHAPTER 9

History

9.1 0.0.3 (2017-05-06)

Some changes during the OMI hackfest!

• Make creation of Work and Copyright optional when registering a Manifestation.

9.2 0.0.2 (2017-05-05)

Some changes during the OMI hackfest!

Some highlights:

• Add register_work method to enable registering a work without necessarily registering a manifestation.

9.3 0.0.1 (2017-02-17)

First alpha release on PyPI.

Additional features added with no backwards-incompatible interface changes. COALA IP models are backwards-
incompatible to previous versions due to upgrades related to spec changes.

Some highlights:

• Queryability of an Entity’s ownership history and current owner

• Entities can be given a custom @id

• Additional sanity checks employed when deriving Rights, to ensure that a correct source Right and current
holder are given

• Update COALA IP models to latest spec

• Added usage documentation

37

pycoalaip Documentation, Release 0.0.3

9.4 0.0.1.dev3 (2016-12-06)

Lots of changes and revisions from 0.0.1.dev2. Totally incompatible from before.

Some highlights:

• Implemented Rights derivation (from existing Rights and Copyrights)

• Implemented Rights transfers

• Entities are now best-effort immutable

• Support for loading Entities from a connected persistence layer

9.5 0.0.1.dev2 (2016-08-31)

• Fix packaging on PyPI

9.6 0.0.1.dev1 (2016-08-31)

• Development (pre-alpha) release on PyPI.

38 Chapter 9. History

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

39

pycoalaip Documentation, Release 0.0.3

40 Chapter 10. Indices and tables

Python Module Index

c
coalaip, 13
coalaip.coalaip, 13
coalaip.data_formats, 23
coalaip.entities, 16
coalaip.exceptions, 24
coalaip.models, 22
coalaip.plugin, 24

41

pycoalaip Documentation, Release 0.0.3

42 Python Module Index

Index

Symbols
__init__() (coalaip.coalaip.CoalaIp method), 13
__init__() (coalaip.models.LazyLoadableModel method),

23
__init__() (coalaip.models.Model method), 22

A
AbstractPlugin (class in coalaip.plugin), 24

C
CoalaIp (class in coalaip.coalaip), 13
coalaip (module), 13
coalaip.coalaip (module), 13
coalaip.data_formats (module), 23
coalaip.entities (module), 16
coalaip.exceptions (module), 24
coalaip.models (module), 22
coalaip.plugin (module), 24
CoalaIpError (class in coalaip.exceptions), 24
Copyright (class in coalaip.entities), 17
create() (coalaip.entities.Entity method), 18
create() (coalaip.entities.RightsAssignment method), 18
current_owner (coalaip.entities.Entity attribute), 19

D
data (coalaip.entities.Entity attribute), 19
data (coalaip.models.LazyLoadableModel attribute), 23
data (coalaip.models.Model attribute), 22
DataFormat (class in coalaip.data_formats), 23
derive_right() (coalaip.coalaip.CoalaIp method), 13

E
Entity (class in coalaip.entities), 18
EntityCreationError (class in coalaip.exceptions), 24
EntityNotFoundError (class in coalaip.exceptions), 24
EntityNotYetPersistedError (class in coalaip.exceptions),

24
EntityPreviouslyCreatedError (class in

coalaip.exceptions), 24

EntityTransferError (class in coalaip.exceptions), 24
error (coalaip.exceptions.PersistenceError attribute), 24
existing_id (coalaip.exceptions.EntityPreviouslyCreatedError

attribute), 24

F
from_data() (coalaip.entities.Entity class method), 19
from_persist_id() (coalaip.entities.Entity class method),

19

G
generate_model() (coalaip.entities.Copyright class

method), 17
generate_model() (coalaip.entities.Entity class method),

20
generate_model() (coalaip.entities.Manifestation class

method), 16
generate_model() (coalaip.entities.Right class method),

17
generate_model() (coalaip.entities.RightsAssignment

class method), 18
generate_model() (coalaip.entities.Work class method),

16
generate_user() (coalaip.coalaip.CoalaIp method), 14
generate_user() (coalaip.plugin.AbstractPlugin method),

25
get_history() (coalaip.plugin.AbstractPlugin method), 25
get_status() (coalaip.plugin.AbstractPlugin method), 25

H
history (coalaip.entities.Entity attribute), 20

I
IncompatiblePluginError (class in coalaip.exceptions), 24
is_same_user() (coalaip.plugin.AbstractPlugin method),

25

L
LazyLoadableModel (class in coalaip.models), 22

43

pycoalaip Documentation, Release 0.0.3

ld_context (coalaip.models.LazyLoadableModel at-
tribute), 23

ld_context (coalaip.models.Model attribute), 22
ld_id (coalaip.models.LazyLoadableModel attribute), 23
ld_id (coalaip.models.Model attribute), 22
ld_type (coalaip.models.LazyLoadableModel attribute),

23
ld_type (coalaip.models.Model attribute), 22
load() (coalaip.entities.Entity method), 20
load() (coalaip.models.LazyLoadableModel method), 23
load() (coalaip.plugin.AbstractPlugin method), 26
loaded_model (coalaip.models.LazyLoadableModel at-

tribute), 23

M
Manifestation (class in coalaip.entities), 16
message (coalaip.exceptions.PersistenceError attribute),

24
Model (class in coalaip.models), 22
model (coalaip.entities.Entity attribute), 18
ModelDataError (class in coalaip.exceptions), 24
ModelError (class in coalaip.exceptions), 24
ModelNotYetLoadedError (class in coalaip.exceptions),

24

P
persist_id (coalaip.entities.Entity attribute), 18
PersistenceError (class in coalaip.exceptions), 24
plugin (coalaip.coalaip.CoalaIp attribute), 13
plugin (coalaip.entities.Entity attribute), 18

R
register_manifestation() (coalaip.coalaip.CoalaIp

method), 14
register_work() (coalaip.coalaip.CoalaIp method), 15
Right (class in coalaip.entities), 17
RightsAssignment (class in coalaip.entities), 17

S
save() (coalaip.plugin.AbstractPlugin method), 26
status (coalaip.entities.Entity attribute), 21

T
to_ipld() (coalaip.entities.Entity method), 21
to_json() (coalaip.entities.Entity method), 21
to_jsonld() (coalaip.entities.Entity method), 21
transfer() (coalaip.entities.Right method), 17
transfer() (coalaip.entities.TransferrableEntity method),

21
transfer() (coalaip.plugin.AbstractPlugin method), 26
transfer_right() (coalaip.coalaip.CoalaIp method), 15
TransferrableEntity (class in coalaip.entities), 21
type (coalaip.plugin.AbstractPlugin attribute), 27

V
validator (coalaip.models.LazyLoadableModel attribute),

23
validator (coalaip.models.Model attribute), 22

W
Work (class in coalaip.entities), 16

44 Index

	pycoalaip
	Features
	TODO
	Packaging
	Credits

	Installation
	Stable release
	From sources

	Usage
	Quickstart
	Reference

	Plugins
	Available Plugins
	Writing a Plugin

	Library Reference
	coalaip
	entities
	models
	data formats
	exceptions
	plugin

	About this Documentation
	Building the documentation
	Viewing the documentation
	Making changes

	Contributing
	Types of Contributions
	Get Started!
	Pull Request Guidelines
	Tips

	Credits
	Development Lead
	Contributors

	History
	0.0.3 (2017-05-06)
	0.0.2 (2017-05-05)
	0.0.1 (2017-02-17)
	0.0.1.dev3 (2016-12-06)
	0.0.1.dev2 (2016-08-31)
	0.0.1.dev1 (2016-08-31)

	Indices and tables
	Python Module Index

